دانلود فایل بررسی شبكه ها و تطابق در گراف

این فایل در قالب فرمت word قابل ویرایش ، آماده پرینت و استفاده میباشد

فهرست مطالب
مقدمه
فصل 1
شبكه ها
1-1 شارش ها
1-2 برش ها
1-3 قضيه شارش ماكزيمم – برش مينيمم
1-4 قضيه منجر

فصل 2
تطابق ها
2-1 انطباق ها
2-2 تطابق ها و پوشش ها در گراف هاي دو بخش
2-3 تطابق كامل
2-4 مسأله تخصیص شغل

منابع

شبكه ها
1-1 شارش ها
شبكه هاي حمل و نقل، واسطه‌هايي براي فرستادن كالاها از مراكز توليد به فروشگاهها هستند. اين شبكه ها را مي‌توان به صورت يك گراف جهت دار با يك سري ساختارهاي اضافي درنظر گرفت و آن ها را به صورت كارآيي مورد تحليل و بررسي قرار داد. اين گونه گراف هاي جهت دار، نظريه اي را به وجود آورده اند كه موضوع مورد بحث ما در اين فصل مي باشد. اين نظريه ابعاد وسيعي از كاربردها را دربرمي‌گيرد.
تعريف 1-1 فرض كنيم N=(V,E) يك گراف سودار همبند بيطوقه باشد. N را يك شبكه يا يك شبكه حمل و نقل مي‌نامند هرگاه شرايط زير برقرار باشند:
(الف) رأس يكتايي مانند وجود دارد به طوري كه ، يعني درجة ورودي a، برابر 0 است. اين رأس a را مبدأ يا منبع مي‌نامند.
(ب) رأس يكتايي مانند به نام مقصد يا چاهك، وجود دارد به طوري كه od(z)، يعني درجة خروجي z، برابر با 0 است.
(پ) گراف N وزندار است و از اين رو، تابعي از E در N، يعني مجموعة اعداد صحيح نامنفي، وجود دارد كه به هر كمان يك ظرفيت، كه با نشان داده مي‌شود، نسبت مي‌دهد.
براي نشان دادن يك شبكه، ابتدا گراف جهت زمينه آن (D) را رسم كرده و سپس ظرفيت هر كمان را به عنوان برچسب آن كمان قرار مي‌دهيم.
مثال 1-1 گراف شكل 1-1 يك شبكه حمل و نقل است. در اين جا رأس a مبدأ و راس z مقصد است و ظرفيتها، كنار هر كمان نشان داده شده‌اند. چون ، مقدار كالاي حمل شده از a به z نمي‌تواند از 12 بيشتر شود. با توجه به بازهم اين مقدار محدودتر مي‌شود و نمي‌تواند از 11 تجاوز كند. براي تعيين مقدار ماكسيممي كه مي‌توان از a به z حمل كرد بايد ظرفيتهاي همة كمانهاي بشكه را درنظر بگيريم.

تعريف 1-2 فرض كنيم يك شبكة حمل و نقل باشد تابع f از E در N، يعني مجموعة اعداد صحيح نامنفي، را يك شارش براي N مي نامند هرگاه
الف) به ازاي هر كمان و 
ب) به ازاي هر ، غير از مبدأ a يا مقصد z ، (اگر كماني مانند (v,w) وجود نداشته باشد، قرار مي دهيم 
مقدار تابع f براي كمان e، f(e) را مي توان به نرخ انتقال داده در طول e، تحت شارش f تشبيه كرد. شرط اول اين تعريف مشخص مي‌كند كه مقدار كالاي حمل شده در طول هر كمان نمي تواند از ظرفيت آن كمان تجاوز كند، كران بالايي شرط الف را قيد ظرفيت مي‌نامند.
شرط دوم، شرط بقا ناميده مي شود و ايجاب مي كند كه، مقدار كالايي كه وارد رأس مانند v مي شود با مقدار كالايي كه از اين رأس خارج مي شود برابر باشد. اين امر در مورد همة رأسها به استثناي مبدأ و مقصد بر قرار است.
مثال 1-2 در شبكه هاي شكل 1-2، نشان x,y روي كماني مانند e به اين ترتيب تعيين شده است كه y , x=c(e) مقداري است كه شارشي مانند f به اين كمان نسبت داده است. نشان هر كمان مانند e در صدق مي كند. در شكل 1-2 (الف)، شارش، وارد رأس مي شود،5 است، ولي شارشي كه از آن رأس خارج مي شود 4=2+2 است. بنابراين، در اين حالت تابع f نمي تواند يك شارش باشد. تابع f براي شكل 1-2 (ب) در هر دو شرط صدق مي كند و بنابراين، شارشي براي شبكهء مفروض است.


 قیمت: 55,000 تومان  پرداخت و دانلود

#نسخه_الکترونیکی_کمک_در_کاهش_تولید_کاغذ_است. #اگر_مالک_یا_ناشر_فایل_هستید، با ثبت نام در سایت محصول را به سبدکاربری خود منتقل و درآمدفروش آن را دریافت نمایید.


برچسب ها: شبكه تطابق گراف
دسته بندی: کالاهای دیجیتال » رشته ریاضی (آموزش_و_پژوهش)

تعداد مشاهده: 4055 مشاهده

فرمت محصول دانلودی:.zip

فرمت فایل اصلی: doc

تعداد صفحات: 50

حجم محصول:239 کیلوبایت


نماد اعتماد الکترونیکی


با خرید از ما کدتخفیف10درصدی هدیه دریافت کنید!

درباره ما

"فارسفایل"سال1391 به عنوان اولین مرکز ارائه فروش محصولات دیجیتال با هدف کارآفرینی تاسیس گردید. این حوزه با افزایش آنلاین شاپ ها در کسب کارهای اینترنتی بخش بزرگی از تجارت آنلاین جهانی را در این صنعت تشکیل داده است. حال بستری مناسب برای راه اندازی فروشگاه کسب کار شما آماده شده که امکان فروش محتوا و محصولات دیجیتالی شما وجود دارد.

تماس با ما

آدرس: گناباد، بخش مرکزی، شهرک فرهنگیان، بلوار استقلال، بلوار امام سجاد پلاک70 طبقه_همکف کدپستی9691944367
(ساعت پاسخگویی 7صبح الی 24شب)

تلفن تماس051-57261834 ایمیلfarsfile@gmail.com ارسال پیام در تلگـــرام

نشان و آمار سایت

logo-samandehi
419,317 بازدید امروز
426,120 بازدید دیروز
463,362,373 بازدید کل
21,563 تعداد فروشگاه
49,432 تعداد محصول
تمام حقوق مادی و معنوی سایت برای فارسفایل محفوظ می باشد.
کدنویسی توسط : فارسفایل